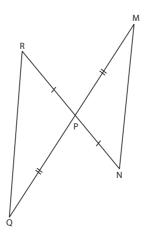
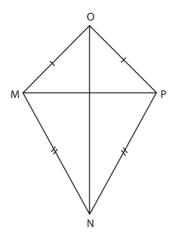
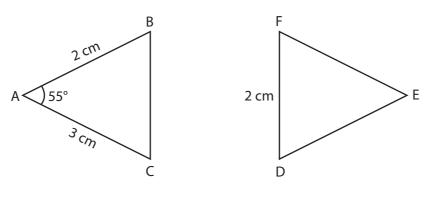

Worksheet

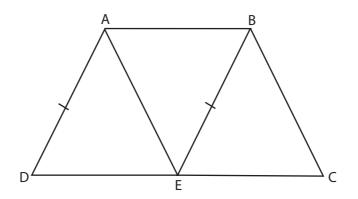

- 1. Choose the correct option.
 - a. In Geometry, when two triangles fit exactly on each other, we call them
 - i. equilateral triangles ii. scalene triangles
 - iii. congruent triangles iv. isosceles triangles
 - b. If two triangles have two corresponding sides equal and the angle included between them is also equal, then the two triangles are congruent by the condition of _____ congruency.
 - i. SAS ii. SSS iii. ASA iv. RHS
 - c. If the hypotenuse and one side of a right-angled triangle are equal to the hypotenuse and one side of another right-angled triangle, then the two triangles are congruent by _____ congruency.
 - i. SSS ii. SAS iii. ASA iv. RHS
- 2. Complete the following sentences.
 - a. Two triangles are congruent if they _____ each other.
 - b. If the sides of a triangle are equal to the corresponding sides of another triangle, then the two triangles are congruent by ______ rule of congruency.
- 3. State true or false.
 - a. Two triangles are congruent if they are of same shape but not same size.
 - b. If two sides of a triangle are equal, then the angles opposite to those sides are also equal.
 - c. Two congruent figures are equal in area, but two figures equal in area need not be congruent.
- 4. Look at the figures and state whether the following pairs of triangles are congruent or not.



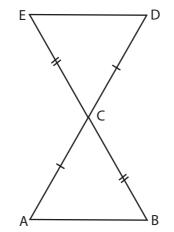
85


5. State which condition of congruency would be used to prove that Δ PQR and Δ PMN are congruent.

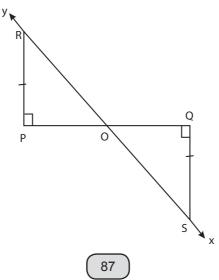
6. In the figure given below, identify the triangle which is congruent to Δ MNO.



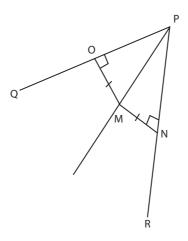
7. Given \triangle ABC \cong \triangle FDE. If AC = 3 cm, \angle A = 55°, find EF and \angle F if FD = 2 cm and BC = FD.



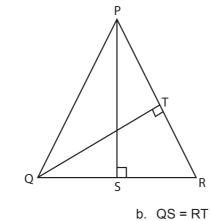
86


8. In the given figure, prove that \triangle ADE $\cong \triangle$ BEC where AD = BE, E is the mid-point of CD and ABCE is a parallelogram.

9. Prove that $\triangle ABC \cong \triangle DEC$.



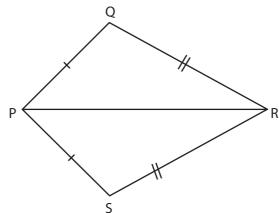
10. Prove that \triangle ORP and \triangle OSQ are congruent and hence prove that PQ and RS bisect each other at O.

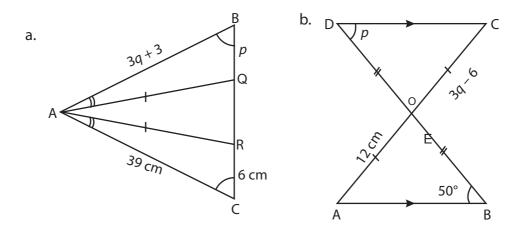


11. Prove that PM bisects \angle QPR.


a. PS = QT

12. PQR is an equilateral triangle and PS and QT are perpendiculars to QR and PR, respectively. Prove that


13. In the adjoining figure, OE bisects \angle E and \angle EFO = \angle EGO. Prove that OG = OF


14. NY is the bisector of \angle MNO and P is any point on NY. Prove that perpendiculars drawn from P to MN and NO are equal.

88

- 15. In the given figure, PQ = PS and QR = SR.
 - a. State three pairs of equal parts in $\triangle PQR$ and $\triangle PSR$.
 - b. Is \triangle PQR $\cong \triangle$ PSR?
 - c. Does PR bisect \angle QPS? Give reasons.

16. In each of the following figures, find the values of *p* and *q*.

Ansv	wers to Wor	ksheet	
1.	a. iii	b. i	c. iv
2.	a. superimpose	b. SSS	
3.	a. False	b. True	c. Tru
4.	a. Yes	b. Yes	c. No
5.	SAS		
6.	ΔPNO		
7.	∠ F = 55°, EF = 3 cm		
15.	a. PQ = PS; QR = SR; PR = PR		b. Yes
10	a = C = 0		

16. a. p = 6 cm; q = 12 cm b. $p = 50^{\circ}$; q = 6 cm

89

c. Yes